Statistika Non Parametrik


A.  Pengertian
Tes statistik non parametrik adalah tes yang modelnya tidak menetapkan syarat-syarat mengenai parameter-parameter populasi yang merupakan induk sampel penelitiannya. Tes non parametrik tidak menuntut pengukuran sekuat yang dituntut tes statistik parametrik. Sebagian besar tes non parametrik dapat diterapkan untuk data dalam skala ukur ordinal dan beberapa yang lain dapat diterapkan untuk data dalam skala ukur nominal.
Meskipun semua anggapan tes parametrik mengenai populasi dan syarat-syarat mengenai kekuatan pengukuran dipenuhi (5 poin syarat parametrik), kita ketahui bahwa dengan memperbesar ukuran sampel dengan banyak elemen yang sesuai dapat menggunakan suatu tes non parametrik sebagai ganti tes parametrik dengan masih mempertahankan kekuatan yang sama untuk menolak H0.
B.  Keuntungan Tes Statistik Non Parametrik
1.    Pernyataan kemungkinan yang diperoleh dari sebagian besar tes statistik non parametrik adalah kemungkinan-kemungkinan yang eksak, tidak peduli bagaimana bentuk distribusi populasi yang merupakan induk sampel-sampel yang kita tarik.
2.    Jika sampelnya sekecil N = 6, hanya tes statistik non parametrik yang dapat digunakan kecuali kalau sifat distribusi populasinya diketahui secara pasti.
3.    Terdapat tes statistik non parametrik untuk menggarap sampel-sampel yang terdiri dari observasi-observasi dari beberapa populasi yang berlainan. Tidak ada satupun di antara tes parametrik dapat digunakan untuk data semacam itu tanpa menuntut kita untuk membuat anggapan-anggapan yang nampak tidak realistis.
4.    Tes statistik non parametrik dapat untuk menggarap data yang pada dasarnya merupakan ranking dan juga untuk data yang skor-skor keangkaanya secara sepintas kelihatan memiliki kekuatan ranking. Jika data pada dasarnya berupa ranking atau bahkan data itu hanya bisa diikategorikan sebagai plus (+) atau minus (-), data tersebut dapat digarap dengan menggunakan statistik non parametrik.
5.    Metode statistik non parametrik dapat digunakan untuk menggarap data yang hanya merupakan klasifikasi semata, yakni yang diukur dalam skala nominal.
C.  Kelemahan Tes Statistik Non Parametrik
Jika data telah memenuhi semua anggapan model statistik parametrik, dan jika pengukurannya mempunyai kekuatan seperti yang dituntut, maka penggunaan tes statistik non parametrik akan merupakan penghamburan data. Misal : kita ingat bahwa bila suatu tes statistik non parametrik memiliki kekuatan efisiensi besar, katakanlah 90%, ini berarti bahwa kalau semua syarat tes statistik parametrik dipenuhi, maka tes statistik parametrik yang sesuai akan efektif dengan sampel yang 10% lebih kecil daripada yang digunakan dalam tes statistik non parametrik.Belum ada satupun metode statistik non parametrik untuk menguji interaksi-interaksi dalam model analisis varian (ANOVA), kecuali kita berani membuat anggapan-anggapan khusus tentang aditivitas. Contoh penggunaan statistik non parametrik seperti pada uji t pada parametrik digantikan menjadi uji Mannn Whitney ataupun Wilcoxon pada non parametrik dan uji F pada parametrik digantikan oleh uji Kruskal Wallis pada non parametrik, dll.
Dengan pengetahuan kita akan klasifikasi metoda statistik yang sudah dijelaskan di atas, diharapkan ada kehati-hatian dalam diri peneliti untuk menentukan dan menetapkan suatu alat uji statistik pada data hasil penelitiannya. Kata kuncinya adalah “mengoptimalkan penolakan H0 (asumsi dasar penelitian) yang memang seharusnya di tolak”. Sehingga perlakuan awal terhadap data penelitian yang telah didapatkan menjadi lebih teliti dan spesifik guna mengoptimalkan penggunaan alat atau metode statistik yang tepat agar dihasilkan suatu simpulan yang optimal atas suatu penelitian.

D.  Penggunaan statistik non parametrik
Statistik non parametrik banyak digunakan pada kondisi di mana peneliti dihadapkan pada data yang berupa ranking, misalnya data untuk menilai peringkat mana yang lebih penting diantara beberapa atribut produk. Begitupun ketika hendak menganalisis data berupa data nominal atau data dikotomus, misalnya kita hanya menggunakan skala 1 dan 2 untuk membedakan jenis kelamin laki-laki dan perempuan. Parameter-parameter statistik seperti rata-rata dan standar deviasi menjadi tidak relevan. Jika kita paksakan untuk menggunakannya maka tentu rata-rata data hanya menyebar di antara angka 1 dan 2. Ketika peneliti menggunakan skala ordinal dalam mengukur suatu variabel, statistik non parametrik merupakan metode yang cocok untuk menganalisis data tersebut. Namun, kebanyakan peneliti menggunakan statistik parametrik melalui penghitungan parameter mean dan standar deviasi terlebih dahulu. Memang, dalam hal interpretasi, statistik parametrik lebih mudah dipahami dibandingkan statistik non parametrik. Kita tentu akan lebih mudah membaca rata-rata atau penyimpangan suatu data dibandingkan ranking dari data itu sendiri. Alasan kemudahan membaca hasil inilah yang sering dijadikan justifikasi untuk menghindari statistik non parametrik. Alasan kedua penggunaan statistik non parametrik adalah ketika data peneliti dihadapkan pada data yang tidak berdistribusi normal atau peneliti tidak memiliki cukup bukti yang kuat data berasal dari distribusi data seperti apa. Kita sering dihadapkan pada kondisi di mana data tidak berdistribusi normal, misalnya distribusi data terlalu miring ke kiri atau ke kanan. Berbagai usaha dapat dilakukan dengan mereduksi data outlier atau data ekstrim. Namun, jika hal tersebut tidak merubah distribusi data menjadi terdistribusi normal, maka metode non parametrik dapat dilakukan. Sering muncul pertanyaan kapan non parametrik digunakan :
1.    Bila hipotesisi yang diuji tidak melibatkan suatu parameter populasi.
2.    Bila skala pengukuran yang disyaratkan dalam statistika parametrik tidak terpenuhi  misalnya skala ordinal dan nominal.

E.   Contoh metode analisis non parametrik
Kedua metode ini tentu memiliki konsekuensi terhadap pendekatan analisis yang digunakan. Untuk menganalisis pengaruh suatu variabel penyebab terhadap variabel respon, biasanya kita menggunakan analisis regresi linier sederhana atau berganda. Dalam metode non parametrik, metode tersebut tidak lagi relevan. Pendekatan yang cocok adalah regresi non parametrik. Begitu pun ketika kita menganalisis hubungan antara dua variabel. Biasanya kita menggunakan analisis korelasi Pearson Product Moment. Namun, dalam metode non parametrik analisis korelasi lebih dikenal dengan korelasi Rank spearman. Teknik perhitungannya berbeda. Dalam Rank spearman, kita terlebih dahulu membuat ranking dari data yang akan dikorelasikan sementara dalam Pearson product moment tidak dilakukan. Metode korelasi non parametrik populer lainnya adalah Kendall Tau. Ketika kita hendak melakukan uji perbandingan antara kelompok, maka metode analisis yang digunakan dalam statistik parametrik adalah uji t (ketika yang kita bandingkan 2 kelompok), atau uji anova (ketika kelompok yang kita bandingkan lebih dari 2). Berbeda dengan statistik parametrik, dalan non parametrik ada uji Kruskall wallis yang sebaiknya digunakan.

F.   Antara Statistika Parametrik dan Nonparametrik
Statistika pada dasarnya dapat dibagi atas Statistika Deskriptif dan Statistika Inferensial/Induktif. Statistika Deskriptif meliputi prosedur, proses dan tahapan dalam peringkasan hasil-hasil pengamatan secara kuantitatif. Dalam pengertian lain statistika deskriptif mempelajari cara-cara pengumpulan, penyusunan, dan penyajian data suatu penelitian. Tujuan utama dari statistika deskriptif adalah membantu menggambarkan fakta sehingga lebih mudah dibaca dan dipahami.
Statistika induktif adalah statistika yang terkait dengan penarikan kesimpulan serta pengambilan keputusan berdasarkan fakta. Dalam pengertian lain, statistika induktif juga didefinisikan sebagai statistika yang mempelajari cara-cara penarikan suatu kesimpulan dari suatu populasi tertentu berdasarkan sebagian data (sampel). Dalam penarikan kesimpulan tersebut, statistik induktif mengacu kepada suatu pengujian hipotesis tertentu.
Selanjutnya, dalam statistika induktif, berbagai prosedur dan uji statistik yang dapat digunakan pada dasarnya dapat dikelompokkan menjadi dua kelompok, yakni kelompok Statistik Parametrik dan kelompok Statistik Non-Parametrik. Uji Statistik Parametrik ialah suatu uji yang modelnya menetapkan adanya syarat-syarat tertentu (asumsi-asumsi) dari sebaran (distribusi) data populasinya. Statistika parametik lebih banyak digunakan untuk menganalisis data yang berskala interval dan rasio dengan dilandasi asumsi tertentu seperti normalitas. Oleh karenanya, makna hasil suatu uji parametrik tergantung pada validitas asumsi-asumsi tersebut. Selain itu, jika dilihat dari jumlah datanya, biasanya data berjumlah besar, sekurang-kurangnya lebih besar atau sama dengan 30 data.
Uji Statistik Non-Parametrik ialah suatu uji statistik yang tidak memerlukan adanya asumsi-asumsi mengenai sebaran data populasinya (belum diketahui sebaran datanya dan tidak perlu berdistribusi normal). Oleh karenanya statistik ini juga dikemukakan sebagai statistik bebas sebaran (tdk mensyaratkan bentuk sebaran parameter populasi, baik normal atau tidak). Statistika non-parametrik dapat digunakan untuk menganalisis data yang berskala Nominal atau Ordinal. Data berjenis Nominal dan Ordinal tidak menyebar normal. Dari segi data, pada dasarnya data berjumlah kecil, yakni kurang dari 30 data.

G.  Perbedaan Statistik Parametrik dan Statistik Non-Parametrik
Saat kita hendak melakukan suatu riset, seringkali kita dihadapkan pada pilihan metode. Metode statistik apakah yang cocok digunakan dalam riset kita tersebut. Dalam mempelajari statistik, biasanya kita langsung dihadapkan pada metode statistik parametrik, padahal tidak semua data cocok diolah dengan statistik parametrik. Walaupun perkembangan statistik parameter sudah sedemikian canggih namun statistik parametrik memiliki beberapa kekurangan, misalnya pada masalah-masalah sosial yang memiliki skala nominal dan rasio, statistik parametrik tidak mampu mengukur dengan baik. Kalaupun bisa, hal tersebut merupakan upaya yang berlebihan (excessively method). Maka Statistik parametrik digunakan jika kita telah mengetahui model matematis dari distribusi populasi suatu data yang akan dianalisis. Jika kita tidak mengetahui suatu model distribusi populasi dari suatu data dan jumlah data relatif kecil atau asumsi kenormalan tidak selalu dapat dijamin penuh,maka kita harus menggunakan statistik non parametrik (statistik bebas distribusi).

Berikut ini adalah ringkasan yang memuat perbedaan antara Statistik Parametrik dan Statistik Non Parametrik. Dengan memahami perbedaan antara keduanya, diharapkan kita bisa menemukan metode statistik yang tepat dalam mengolah data riset yang tepat.
H.  Ciri-ciri statistik non-parametrik :
1.    Data tidak berdistribusi normal
2.    Umumnya data berskala nominal dan ordinal
3.    Umumnya dilakukan pada penelitian sosial
4.    Umumnya jumlah sampel kecil

I.     Korelasi Sampel
1.    Prosedur untuk data dari sampel tunggal
Prosedur bertujuan untuk menduga dan menguji hipotesis parameter populasi seperti ukuran nilai sentral. Dalam statistik parametrik, ukuran nilai sentral yang umum adalah rata-rata dan median, dan pengujian hipotesisnya menggunakan uji t. Namun demikian, uji t memiliki asumis bahwa populasi dari sampel yang diambil berdistribusi normal. Jika asumsi ini tidak terpenuhi, akan mempengaruhi kesimpulan pengujian hipotesis. Prosedur non parametrik untuk menduga nilai sentral untuk sampel tunggal ini diantaranya adalah uji tanda untuk sampel tunggal dan uji peringkat bertanda Wilcoxon. Selain pengukuran tendensi sentral, juga terdapat prosedur non parametrik lainnya untuk sampel tunggal dalam pengukuran proporsi populasi (yaitu uji binomial) dan uji kecenderungan (trend) data berdasarkan waktu (yaitu uji Cox-Stuart)
2.    Prosedur untuk sampel independen.
Prosedur ini digunakan ketika kita ingin membandingkan dua variabel yang diukur dari sampel yang tidak sama (bebas). Misalnya sampel yang diambil berasal dari dua populasi yaitu populasi rumah pedagang sate dan populasi pedagang bakso, dan ingin membandingkan rata-rata pendapatan diantara kedua kelompok pedagang ini. Dalam statistik parametrik, untuk membandingkan membandingkan nilai rata-rata dua kelompok independent, dapat digunakan uji t (t-test). Untuk nonparametrik, alternatif pengujiannya diantaranya adalah Wald-Wolfowitz runs test, Mann-Whitney U test dan Kolmogorov-Smirnov two-sample test. Selanjutnya, jika kelompok yang diperbandingkan lebih dari dua, dalam statistik parametrik dapat menggunakan analisis varians (ANOVA/MANOVA), dan pada statistik nonparametrik alternatifnya diantaranya adalah analisis varians satu arah berdasarkan peringkat Kruskal-Wallis dan Median test.
3.    Prosedur untuk Sampel dependen.
Prosedur ini digunakan ketika ingin membandingkan dua variabel yang diukur dari sampel sama (berhubungan). Misalnya ingin mengetahui perbedaan produktivitas kerja, dengan pengukuran dilakukan pada sampel pekerja yang sama baik sebelum maupun sesudah pelatihan dilakukan. Pada statistik parametrik, jika ingin membandingkan dua variabel yang diukur dalam sampel yang sama, dapat menggunakan uji t data berpasangan. Sebaliknya, alternatif non-parametrik untuk uji ini adalah Sign test dan Wilcoxon’s matched pairs test. Jika variabel diteliti bersifat dikotomi, dapat menggunakan McNemar’s Chi-Square test. Selanjutnya, jika terdapat lebih dari dua variabel, dalam statistik parametrik, dapat menggunakan ANOVA. Alternatif nonparametrik untuk metode ini adalah Friedman’s two-way analysis of variance dan Cochran Q test.
4.    Korelasi Peringkat dan Ukuran-Ukuran Asosiasi Lainnya.
Dalam statistik parametrik ukuran korelasi yang umum digunakan adalah korelasi Product Moment Pearson. Diantara korelasi nonparametrik yang ekuivalen dengan koefisien korelasi standar ini dan umum digunakan adalah Spearman R, Kendal Tau dan coefficien Gamma. Selain ketiga pengukuran tersebut, Chi square yang berbasiskan tabel silang juga relatif populer digunakan dalam mengukur korelasi antar variabel.
5.    Jenis-jenis uji nonparametrik  yang bisa digunakan:
Kali ini hanya mencatumkan uji-uji yang digunakan dalam non parametrik. untuk selanjutnya akan dibahas masing-masing uji tersebut. Uji ini saya buat dalam satu tabel sehingga agar mudah dipahami. Berikut summary table uji non parametrik.



Contoh Soal :
1.    Apakah perbedaan pada letak kegunaan antara statistika parametrik dan non parametrik

Penyelesaian :
Statistik parametrik digunakan jika kita telah mengetahui model matematis dari distribusi populasi suatu data yang akan dianalisis. Jika kita tidak mengetahui suatu model distribusi populasi dari suatu data dan jumlah data relatif kecil atau asumsi kenormalan tidak selalu dapat dijamin penuh,maka kita harus menggunakan statistik non parametrik (statistik bebas distribusi).
2.    Sebutkan ciri-ciri statistika non-parametrik

Penyelesaian :
Ciri-cirinya adalah sebagai berikut :
a)    Data tidak berdistribusi normal
b)   Umumnya data berskala nominal dan ordinalUmumnya dilakukan pada penelitian sosial
c)    Umumnya jumlah sampel kecil
3.    Apa sajakah keungguan statistika non-parametrik ?

Penyelesaian :
a.    Pernyataan kemungkinan yang diperoleh dari sebagian besar tes statistik non parametrik adalah kemungkinan-kemungkinan yang eksak, tidak peduli bagaimana bentuk distribusi populasi yang merupakan induk sampel-sampel yang kita tarik.
b.    Jika sampelnya sekecil N = 6, hanya tes statistik non parametrik yang dapat digunakan kecuali kalau sifat distribusi populasinya diketahui secara pasti.
c.    Terdapat tes statistik non parametrik untuk menggarap sampel-sampel yang terdiri dari observasi-observasi dari beberapa populasi yang berlainan. Tidak ada satupun di antara tes parametrik dapat digunakan untuk data semacam itu tanpa menuntut kita untuk membuat anggapan-anggapan yang nampak tidak realistis.
d.   Tes statistik non parametrik dapat untuk menggarap data yang pada dasarnya merupakan ranking dan juga untuk data yang skor-skor keangkaanya secara sepintas kelihatan memiliki kekuatan ranking. Jika data pada dasarnya berupa ranking atau bahkan data itu hanya bisa diikategorikan sebagai plus (+) atau minus (-), data tersebut dapat digarap dengan menggunakan statistik non parametrik.
e.    Metode statistik non parametrik dapat digunakan untuk menggarap data yang hanya merupakan klasifikasi semata, yakni yang diukur dalam skala nominal.

4.    Bagaimanakah prosedur untuk data dari sampel tunggal pad statistika parametrik dan non parametrik ?

Penyelesaian :
Prosedur bertujuan untuk menduga dan menguji hipotesis parameter populasi seperti ukuran nilai sentral. Dalam statistik parametrik, ukuran nilai sentral yang umum adalah rata-rata dan median, dan pengujian hipotesisnya menggunakan uji t. Namun demikian, uji t memiliki asumis bahwa populasi dari sampel yang diambil berdistribusi normal. Jika asumsi ini tidak terpenuhi, akan mempengaruhi kesimpulan pengujian hipotesis. Prosedur non parametrik untuk menduga nilai sentral untuk sampel tunggal ini diantaranya adalah uji tanda untuk sampel tunggal dan uji peringkat bertanda Wilcoxon. Selain pengukuran tendensi sentral, juga terdapat prosedur non parametrik lainnya untuk sampel tunggal dalam pengukuran proporsi populasi (yaitu uji binomial) dan uji kecenderungan (trend) data berdasarkan waktu (yaitu uji Cox-Stuart)

5.    Bagaimanakah metode analisis non parametrik ?

Penyelesaian :
Dalam metode non parametrik analisis korelasi lebih dikenal dengan korelasi Rank spearman. Teknik perhitungannya berbeda. Dalam Rank spearman, kita terlebih dahulu membuat ranking dari data yang akan dikorelasikan sementara dalam Pearson product moment tidak dilakukan. Metode korelasi non parametrik populer lainnya adalah Kendall Tau. Ketika kita hendak melakukan uji perbandingan antara kelompok, maka metode analisis yang digunakan dalam statistik parametrik adalah uji t (ketika yang kita bandingkan 2 kelompok), atau uji anova (ketika kelompok yang kita bandingkan lebih dari 2). Berbeda dengan statistik parametrik, dalan non parametrik ada uji Kruskall wallis yang sebaiknya digunakan.



Komentar