Teorema Bayes


Pengertian Teorema Bayes

Dalam teori probabilitas dan statistika, teorema Bayes adalah sebuah teorema dengan dua penafsiran berbeda. Dalam penafsiran Bayes, teorema ini menyatakan seberapa jauh derajat kepercayaan subjektif harus berubah secara rasional ketika ada petunjuk baru. Dalam penafsiran frekuentis teorema ini menjelaskan representasi invers probabilitas dua kejadian. Teorema ini merupakan dasar dari statistika Bayes dan memiliki penerapan dalam sains, rekayasa, ilmu ekonomi (terutama ilmu ekonomi mikro), teori permainan, kedokteran dan hukum. Penerapan teorema Bayes untuk memperbarui kepercayaan dinamakan inferens Bayes.

Ilustrasi :


Sebuah perkantoran biasanya membutuhkan tenaga listrik yang cukup agar semua aktifitas pekerjaannya terjamin dari adanya pemutusan aliran listrik.Terdapat dua sumber listrik yg digunakan PLN dan Generator. Bila listrik PLN padam maka secara otomatis generator akan menyala dan memberikan aliran listrik untuk seluruh perkantoran. Masalah yang selama ini menganggu adalah ketidakstabilan arus(voltage)listrik, baik dari PLN maupun generaor, yang akan merusak peralatan listrik.Selama beberapa tahun terakhir, diketahui bahwa probabilitas terjadinya listrik padam adalah 0.1, dgn kata lain peluang bahwa perkantoran itu menggunakan listrik PLN adalah 0.9 dan peluang menggunakan generatoradalah 0.1.Peluang terjadi ketidakstabilan pada arus listrik PLN maupun generator masing-masing 0.2 dan 0.3.
Persamaan seperti ini dapat di ilustrasikan :



E       : Peristiwa listrik PLN digunakan
Ec     : Peristiwa listrik Generator digunakan
 A      : Peristiwa terjadinya ketidak stabilan arus

Peristiwa A dapat ditulis sebagai gabungan dua kejadian yang saling lepas
 

 Jadi : 

dengan menggunakan probabilitas bersyarat maka :

Diketahui:

P(E)=0.9     P(E’)=0.1
P(A|E)=0.2 P(A|E’)=0/3
Shg:
P(A)=P(E).P(A|E)+P(E’).P(A|E’)
 =(0.9).(0.2)+(0.2).(0.3)
 =0.21
Kembali pada permasalahan diatas, bila suatu saat diketahui terjadi ketidakstabilan arus listrik, maka berapakah probabilitas saat itu aliran listrik berasal dari generator? Dengan menggunakan rumus probalilitas bersyarat diperoleh:
P(E’|A)=P(E’∩A)/P(A)
            =P(E’).P(A|E’)/P(A)
            =0.03/0.21=0/143

         Peristiwa B1,B2,….,Bk merupakan suatu sekatan(partisi) dari ruang sampel S dengan P(Bi)≠0 untuk i=1,2,…,k maka setiap peristiwa A anggota S berlaku:


         Berikut k=3 :
      
         Digunakan bila ingin diketahui probabilitas P(B1|A),P(B2|A)….,P(Bk|A) dengan rumus sebagai berikut :


Ilustrasi 2  : 
Misalkan kawan Anda bercerita dia bercakap-cakap akrab dengan seseorang lain di atas kereta api. Tanpa informasi tambahan, peluang dia bercakap-cakap dengan perempuan adalah 50%. Sekarang misalkan kawan Anda menyebut bahwa orang lain di atas kereta api itu berambut panjang. Dari keterangan baru ini tampaknya lebih bolehjadi kawan Anda bercakap-cakap dengan perempuan, karena orang berambut panjang biasanya wanita. Teorema Bayes dapat digunakan untuk menghitung besarnya peluang bahwa kawan Anda berbicara dengan seorang wanita, bila diketahui berapa peluang seorang wanita berambut panjang.
Misalkan:
·      W adalah kejadian percakapan dilakukan dengan seorang wanita.
·      L adalah kejadian percakapan dilakukan dengan seorang berambut panjang
·      M adalah kejadian percakapan dilakukan dengan seorang pria

Kita dapat berasumsi bahwa wanita adalah setengah dari populasi. Artinya peluang kawan Anda berbicara dengan wanita,
P(W) = 0,5
Misalkan juga bahwa diketahui 75 persen wanita berambut panjang. Ini berarti bila kita mengetahui bahwa seseorang adalah wanita, peluangnya berambut panjang adalah 0,75. Kita melambangkannya sebagai:
P(L|W) = 0,75
Sebagai keterangan tambahan kita juga mengetahui bahwa peluang seorang pria berambut panjang adalah 0,3. Dengan kata lain:
P(L|M) = 0,3
Di sini kita mengasumsikan bahwa seseorang itu adalah pria atau wanita, atau P(M) = 1 - P(W) = 0,5. Dengan kata lain M adalah kejadian komplemen dari W.
Tujuan kita adalah menghitung peluang seseorang itu adalah wanita bila diketahui dia berambut panjang, atau dalam notasi yang kita gunakan, P(W|L). Menggunakan teorema Bayes, kita mendapatkan:


Di sini kita menggunakan aturan peluang total. Dengan memasukkan nilai-nilai peluang yang diketahui ke dalam rumus di atas, kita mendapatkan peluang seseorang itu wanita bila diketahui dia berambut panjang adalah 0,714. Angka ini sesuai dengan intuisi awal kita, bahwa peluang kawan kita itu bercakap-cakap dengan wanita meningkat.
Dari contoh di atas kita bisa merumuskan teorema Bayes secara umum

Contoh :

Suatu generator telekomunikasi nirkabel mempunyai 3 pilihan tempat untuk membangun pemancar sinyal yaitu didaerah tengah kota, daerah kaki bukit dikota itu  dan derah tepi pantai, dengan masing-masing mempunyai peluang 0.2; 0.3 dan 0.5. Bila pemancar dibangun ditengah kota, peluang terjadi ganguan sinyal adalah 0.05. Bila pemancar dibangun dikaki bukit, peluang terjadinya ganguan sinyal adalah 0.06.Bila pemancar dibangun ditepi pantai, pelaung ganguan sinyal adalah 0.08.
a. Berapakah peluang terjadinya ganguan sinyal?
b. Bila diketahui telah terjadinya gangguan pada sinyak pada sinyal, berapa peluang bahwa operator tsb ternyata telah membangun pemancar di tepi pantai?

 Jawab :
Misal:
A                     = Terjadi ganguan sinyal
B1                   = Pemancar dibangun di tengah kota
B2                   = ----------------------------di kaki bukit
B3                   = ----------------------------di tepi pantai
Maka :
a). Peluang terjadinya ganguan sinyal
  P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)
         = (0,2).(0.05)+(0.3)(0.06)+(0.5)(0.08)=0.001+0.018+0.04=0.068
b).Diketahui telah terjadi ganguan pd sinyal, maka peluang bahwa operator ternyata telah
    membangun pemancar di tepi pantai:
 Dapat dinyatakan dgn: “Peluang bersyarat bahwa operator membangun pemancar di tepi   pantai bila diketahui telah terjadi ganguan sinyal : 










Komentar